Abstract

Small-angle neutron scattering has been used to determine the rate constants for transesterification reactions between hydrogenous and deuterated poly(ethylene terephthalate)s. Intimate mixtures of the two polymers at a weight fraction composition of 0.5 were pressed into plaques and heated for a range of times at temperatures of 543, 553, and 563 K. The small-angle-scattering cross sections were collected for the plaques on quenching to ambient temperature. These data were analyzed using a procedure based on second-order kinetics developed earlier and which has been applied to a range of polyesters. From the rate constants obtained the activation energy and preexponential factor for the transesterification reaction have been obtained. Aspects of the reaction that have been investigated were the molecular weight of the hydrogenous polymer and the ratio of hydroxyl to carboxyl end groups in a hydrogenous polymer, the molecular weight of which was close to that of the deuterio polymer. Although there is an ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call