Abstract
Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Given semantic annotations such as class labels and pairwise similarities of the training data, hashing methods can learn and generate effective and compact binary codes. While some newly introduced images may contain undefined semantic labels, which we call unseen images, zero-shot hashing (ZSH) techniques have been studied for retrieval. However, existing ZSH methods mainly focus on the retrieval of single-label images and cannot handle multilabel ones. In this article, for the first time, a novel transductive ZSH method is proposed for multilabel unseen image retrieval. In order to predict the labels of the unseen/target data, a visual-semantic bridge is built via instance-concept coherence ranking on the seen/source data. Then, pairwise similarity loss and focal quantization loss are constructed for training a hashing model using both the seen/source and unseen/target data. Extensive evaluations on three popular multilabel data sets demonstrate that the proposed hashing method achieves significantly better results than the comparison methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.