Abstract
Most existing Zero-Shot Learning (ZSL) methods have the strong bias problem, in which instances of unseen (target) classes tend to be categorized as one of the seen (source) classes. So they yield poor performance after being deployed in the generalized ZSL settings. In this paper, we propose a straightforward yet effective method named Quasi-Fully Supervised Learning (QFSL) to alleviate the bias problem. Our method follows the way of transductive learning, which assumes that both the labeled source images and unlabeled target images are available for training. In the semantic embedding space, the labeled source images are mapped to several fixed points specified by the source categories, and the unlabeled target images are forced to be mapped to other points specified by the target categories. Experiments conducted on AwA2, CUB and SUN datasets demonstrate that our method outperforms existing state-of-the-art approaches by a huge margin of 9.3 ~ 24.5% following generalized ZSL settings, and by a large margin of 0.2 ~ 16.2% following conventional ZSL settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.