Abstract

Foamy viruses are nonpathogenic retroviruses that offer unique opportunities for gene transfer into various cell types including hematopoietic stem cells. We used a simian foamy virus type 1 vector (SFV-1) containing a LacZ reporter gene with a titer of 1–5 × 10 6 viral particles/ml that was free of replication-competent retrovirus to transduce human umbilical cord blood CD34+ cells. Transduced CD34+ cord blood cells were transplanted into NOD/SCID mice and plated in serum-free methylcellulose culture to determine the transduction efficiency of human hematopoietic progenitor cells. A transduction efficiency of about 20% was obtained. At 6–10 weeks posttransplantation, human hematopoietic cell engraftment and marking were determined. Marrow from transplanted mice demonstrated human cell engraftment by the presence of human (CD45+) cells containing both CD19+ lymphoid and CD33+ myeloid cells. Serial sampling of NOD/SCID bone marrow revealed the presence of 6.7–14.0% CD45+ cells at 6 weeks posttransplant as compared to 3.6–27.2% CD45+ cells at 9–10 weeks posttransplant. Human progenitors examined from NOD/SCID bone marrow cells 9 weeks posttransplant revealed from 7.4 to 25.9% of the colonies exhibiting X-gal staining. Our study demonstrates the ability of a simian foamy virus vector to transduce the SCID-repopulating cell and offers a promising new gene delivery system for use in hematopoietic stem cell gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call