Abstract

Since most transplanted cells rapidly die in an ischemic environment by hypoxia and hyponutrition, it is crucial to know how to protect transplanted cells for improving transplantation efficiency. We examined whether the transduction of an artificial anti-cell death protein (PTD-FNK) into bone marrow mononuclear cells (BM-MNCs) prevents cell death and improves the transplantation efficiency of BM-MNCs in ischemic regions. Rat bone marrow cells were prepared from the femur and tibia and cultured on dishes precoated with human fibronectin in the absence of serum. BM-MNCs transduced with PTD-FNK survived better than those without the protein ( P < 0.008) and retained the potential to differentiate into endothelial progenitor cells (EPCs), as judged by the uptake of an acetylated low-density lipoprotein and the ability to bind lectin. Next, we used a co-culture system comprising human umbilical vein endothelial cells (HUVECs) and fibroblasts to examine angiogenic potential. HUVECs pretreated with PTD-FNK survived and formed a blood-vessel-like structure better than untreated cells ( P < 0.001). When BM-MNCs expressing EGFP were transplanted into ischemic areas of a male rat ischemic hindlimb model, the cells pretreated with PTD-FNK were incorporated into blood vessel with a higher efficiency than the untreated BM-MNCs ( P = 0.03). BM-MNCs protected through transduction of PTD-FNK maintained their angiogenic potential. Thus, PTD-FNK improves the transplantation efficiency of BM-MNCs into ischemic regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.