Abstract

To investigate the in vivo interaction of syntaxin-mediated soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) assembly and insulin exocytosis in biphasic release, we examined the dynamics of insulin granule motion such as docking and fusion with the plasma membrane when the syntaxin SNARE motif (H3 domain) was transduced into living MIN6 beta cells. TAT-H3, produced by fusion of the protein transduction domain of human immunodeficiency virus-1 TAT to the syntaxin-H3 domain, was rapidly transduced into the subplasmalemmal region in living MIN6 cells. Immunoblotting analysis followed by immunoprecipitation on TAT-H3-treated MIN6 cells showed that TAT-H3 binds SNAP-25 and VAMP-2 in vivo. Transduction of MIN6 cells with TAT-H3 caused a decrease in both the first and second phase of insulin release. We therefore quantitatively analyzed approaching, docking, and fusing of green fluorescent protein-labeled single insulin granules in TAT-H3-transduced MIN6 cells by evanescent wave microscopy. Under high glucose stimulation, TAT-H3 treatment not only reduced the fusion events from previously docked granules for the first 120 s (first phase of release) but also strongly inhibited the docking and fusion from newly recruited insulin granules after this point (second phase of release). During the second phase of release we observed a marked reduction in the accumulation of newly docked insulin granules; subsequently, fusion events were significantly decreased. TAT-H3 treatment by itself, however, did not alter the number of previously docked granules without stimulation. We conclude that introduction of the H3 domain into MIN6 cells inhibits biphasic insulin release by two mechanisms. 1) In the first phase of insulin release, the H3 domain interferes with previously docked granules to be fused, and 2) in the second phase of insulin release reduced fusion events result from a marked decline of newly docked granules. Thus, syntaxin-mediated SNARE assembly modulates insulin exocytosis in biphasic insulin release in a distinct way.

Highlights

  • In pancreatic ␤ cells, the hormone insulin is stored in large dense-core vesicles and is released by exocytosis when glucose levels rise [1]

  • To investigate the in vivo interaction of syntaxin-mediated soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) assembly and insulin exocytosis in biphasic release, we examined the dynamics of insulin granule motion such as docking and fusion with the plasma membrane when the syntaxin SNARE motif (H3 domain) was transduced into living MIN6 ␤ cells

  • Rapid Transduction of TAT Fusion Protein into MIN6 ␤ Cells—To analyze the ability of TAT fusion proteins to transduce into MIN6 ␤ cells, TAT-green fluorescent protein (GFP) fusion protein was added to the culture media of cells and analyzed by fluorescence using laser-scanning confocal microscopy

Read more

Summary

Inhibition of Docking and Fusion of Insulin Granules

␤ cells combined with evanescent wave microscopy to refine the in vivo interaction of syntaxin-mediated SNARE assembly and insulin exocytosis. Our results provide the new aspect showing that syntaxin-mediated SNARE assembly modulates docking and fusion of insulin granule in biphasic insulin release

EXPERIMENTAL PROCEDURES
RESULTS
DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.