Abstract

Type I diabetes is caused by an autoimmune-mediated elimination of insulin-secreting pancreatic islets. Genetic modification of islets offers a powerful molecular tool for improving our understanding of islet biology. Moreover, efficient genetic engineering of islets could allow for evaluation of new strategies aimed at preventing islet destruction. The present study evaluated the ability of a human immunodeficiency virus (HIV)-based lentiviral vector pseudotyped with various viral envelopes to target human islets ex vivo, with the goal of improving efficiency while minimizing toxicity. Transfer of the enhanced green fluorescent protein reporter gene in human islets was first evaluated with an HIV-based vector pseudotyped with the vesicular stomatitis virus (VSV), murine leukemia virus, Ebola, rabies, Mokola, or lymphocytic choriomeningitis virus (LCMV) envelope glycoprotein to optimize transduction efficiency. Results indicated that LCMV-pseudotyped vector transduced insulin-secreting beta cells with the highest efficiency. Moreover, toxicity associated with transduction of islets was found to be lower with LCMV-pseudotyped vector than with VSV-G-pseudotyped vector, the second most efficient vector for islet transduction. Overall, our study describes an improved methodology for achieving safe and efficient gene transfer into cells of human islets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call