Abstract
Background: Human fetal liver hematopoietic stem cells have proven potential as therapeutics but lack extensive research due to their limited supply. Even in vitro expanded fetal liver hematopoietic stem cells enter senescence or lose their self-renewal capacity after a few days in culture. The present study aimed to obtain a homogeneous and persistent supply of hematopoietic stem cells from the fetal liver by establishing a cell line through immortalization of cells by enhancing telomerase activity. Materials and Methods: Human fetal liver hematopoietic CD34+ stem and progenitor cells were transformed and immortalized using retroviruses carrying the human telomerase (hTERT) gene. Following transduction, telomerase activity was assessed using the TRAP assay and telomere length was examined by Southern blotting in transduced cells. Their characterization was conducted using flowcytometry to analyze the CD34+ population of hematopoietic stem cells and their colony forming potential using colony forming unit (CFU) assay. Results: After transduction with hTERT, the life span of human fetal liver hematopoietic CD34+ stem and progenitor cells were extended to 80 population doublings, without any change in cell morphology or population doubling times. Constitutive hTERT expression enhanced the replicative capacity and prevented terminal differentiation of CD34+ fetal liver hematopoietic stem and progenitor cells (FLHSPCs). Moreover, hTERT-transduced stem cells maintained their telomere length and telomerase activity. Conclusion: By introducing telomerase activity into hematopoietic stem and progenitor cells, their lifespan can be extended while maintaining stemness. These modified cells hold promise for in vitro research focused on studying hematopoietic stem cells derived from fetal liver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Hematology-Oncology and Stem Cell Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.