Abstract

Sensory rhodopsin I (SR-I λ max 587 nm) is a phototaxis receptor in the archaeon Halobacterium salinarium. Photoisomerization of retinal in SR-I generates a long-lived intermediate with λ max 373 nm which transmits a signal to the membrane-bound transducer protein HtrI. Although SR-I is structurally similar to the electrogenic proton pump bacteriorhodopsin (BR), early studies showed its photoreactions do not pump protons, nor result in membrane hyperpolarization. These studies used functionally active SR-I, that is, SR-I complexed with its transducer HtrI. Using recombinant DNA methods we have expressed SR-I protein containing mutations in ionizable residues near the protonated Schiff base, and studied wild-type and site-specifically mutated SR-I in the presence and absence of the transducer protein. UV-Vis kinetic absorption spectroscopy, FT-IR, and pH and membrane potential probes reveal transducer-free SR-I photoreactions result in vectorial proton translocation across the membrane in the same direction as that of BR. This proton pumping is suppressed by interaction with transducer which diverts the proton movements into an electroneutral path. A key step in this diversion is that transducer interaction raises the p K a of the aspartyl residue in SR-I (Asp76) which corresponds to the primary proton-accepting residue in the BR pump (Asp85). In transducer-free SR-I, our evidence indicates the p K a of Asp76 is 7.2, and ionized Asp76 functions as the Schiff base proton acceptor in the SR-I pump. In the SR-I/HtrI complex, the p K a of Asp76 is 8.5, and therefore at physiological pH (7.4) Asp76 is neutral. Protonation changes on Asp76 are clearly not required for signaling since the SR-I mutants D76N and D76A are active in phototaxis. The latent proton-translocation potential of SR-I may reflect the evolution of the SR-I sensory signaling mechanism from the proton pumping mechanism of BR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.