Abstract

Propagation of ultrasound through a complex composite sample may exhibit phase interference between two or more sonic-rays if differences in transit time are less than the pulse length. The transit time spectrum of a test sample, equivalent to its impulse response, was derived through active-set deconvolution of ultrasound signals with, and without, the test sample. The aim of this study was to test the hypothesis that in cases where only the transmit ultrasound transducer’s digitally-coded excitation signal is available, hence not the input ultrasound signal without the test sample, incorporation of the transducer impulse response may increase both accuracy and precision of ultrasound transit time spectroscopy. A digital 1 MHz sinusoid signal was used to create an ultrasound pulse that was propagated through a 5 step-wedge acrylic sample immersed in water. Transit time spectra were obtained through deconvolution utilising an ultrasound input signal, along with a digital input signal, with and without incorporation of the transducer impulse response. Incorporation of the transducer impulse response reduced a quantitative measure of noise-to-signal ratio by a factor of 12.The paper has demonstrated the potential for increased accuracy and precision of transit time spectroscopy when the transducer impulse response is incorporated within active-set deconvolution analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.