Abstract

Opioid drugs are extremely potent synthetic analytes, and their abuse is common around the world. Hence, a rapid and point-of-need device is necessary to assess the presence of this compound in body fluid so that a timely countermeasure can be provided to the exposed individuals. Herein, we present an attractive microneedle sensing platform for the detection of the opioid drug fentanyl in real serum samples using an electrochemical detection method. The device contained an array of pyramidal microneedle structures that were integrated with platinum (Pt) and silver (Ag) wires, each with a microcavity opening. The working sensor was modified by graphene ink and subsequently with 4 (3-Butyl-1-imidazolio)-1-butanesulfonate) ionic liquid. The microneedle sensor showed direct oxidation of fentanyl in liquid samples with a detection limit of 27.8 μM by employing a highly sensitive square-wave voltammetry technique. The resulting microneedle-based sensing platform displayed an interference-free fentanyl detection in diluted serum without conceding its sensitivity, stability, and response time. The obtained results revealed that the microneedle sensor holds considerable promise for point-of-need fentanyl detection and opens additional opportunities for detecting substances of abuse in emergencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call