Abstract

Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter involved in many physiological processes that are integral to proper cellular functioning. Due to its profound anti-inflammatory and antioxidant properties, H2S plays important roles in preventing inflammatory skin disorders and improving wound healing. Transdermal H2S delivery is a therapeutically viable option for the management of such disorders. However, current small-molecule H2S donors are not optimally suited for transdermal delivery and typically generate electrophilic byproducts that may lead to undesired toxicity. Here, we demonstrate that H2S release from metal-organic frameworks (MOFs) bearing coordinatively unsaturated metal centers is a promising alternative for controlled transdermal delivery of H2S. Gas sorption measurements and powder X-ray diffraction (PXRD) studies of 11 MOFs support that the Mg-based framework Mg2(dobdc) (dobdc4- = 2,5-dioxidobenzene-1,4-dicarboxylate) is uniquely well-suited for transdermal H2S delivery due to its strong yet reversible binding of H2S, high capacity (14.7 mmol/g at 1 bar and 25 °C), and lack of toxicity. In addition, Rietveld refinement of synchrotron PXRD data from H2S-dosed Mg2(dobdc) supports that the high H2S capacity of this framework arises due to the presence of three distinct binding sites. Last, we demonstrate that transdermal delivery of H2S from Mg2(dobdc) is sustained over a 24 h period through porcine skin. Not only is this significantly longer than sodium sulfide but this represents the first example of controlled transdermal delivery of pure H2S gas. Overall, H2S-loaded Mg2(dobdc) is an easily accessible, solid-state source of H2S, enabling safe storage and transdermal delivery of this therapeutically relevant gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.