Abstract
A lipophilic, nonsteroidal antiinflammation drug, piroxicam, was administered by skin electroporation using short, high-voltage pulses. The transdermal delivery of piroxicam during the electroporation was buffered due to the higher partition in skin lipids than in aqueous environments, which is called entrapment. Entrapment is the main resistance to transdermal delivery of lipophilic drugs. Two types of surfactants were used to enhance the skin electroporation. Tween 80 (0.2 g/L) and sodium dodecyl sulphate (SDS, 3 mg/mL) improve the solubility and diffusion rate of the drug in the hydrophobic local transport regions and reduce the entrapment of piroxicam in the skin. The transdermal delivery rate of piroxicam is increased 30- to 50-fold. However, the entrapment of piroxicam in the skin still occurred when Tween 80 was added. The SDS provides higher and more stable transdermal delivery rates of piroxicam than Tween 80, and also reduces the entrapment of piroxicam in the skin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.