Abstract

Niacin, an established therapeutic for dyslipidemia, is hindered by its propensity to induce significant cutaneous flushing when administered orally in its unmodified state, thereby constraining its clinical utility. This study aimed to fabricate, characterize, and assess the in-vitro and in-vivo effectiveness of niacin-loaded polymeric films (NLPFs) comprised of carboxymethyl tamarind seed polysaccharide. The primary objective was to mitigate the flushing-related side effects associated with oral niacin administration. NLPFs were synthesized using the solvent casting method and subsequently subjected to characterization, including assessments of tensile strength, moisture uptake, thickness, and folding endurance. Surface characteristics were analyzed using a surface profiler and scanning electron microscopy (SEM). Potential interactions between niacin and the polysaccharide core were investigated through X-ray diffraction experiments (XRD) and Fourier transform infrared spectroscopy (FTIR). The viscoelastic properties of the films were explored using a Rheometer. In-vitro assessments included drug release studies, swelling behavior assays, and antioxidant assays. In-vivo efficacy was evaluated through skin permeation assays, skin irritation assays, and histopathological analyses. NLPFs exhibited a smooth texture with favorable tensile strength and moisture absorption capabilities. Niacin demonstrated interaction with the polysaccharide core, rendering the films amorphous. The films displayed slow and sustained drug release, exceptional antioxidant properties, optimal swelling behavior, and viscoelastic characteristics. Furthermore, the films exhibited biocompatibility and non-toxicity towards skin cells. NLPFs emerged as promising carrier systems for the therapeutic transdermal delivery of niacin, effectively mitigating its flushing-associated adverse effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.