Abstract

A serious challenge in transdermal iontophoresis (IP) delivery of insulin (INS) is the low permeability of the drug across the skin. In this paper, we introduced deep eutectic solvent (DESs) as novel chemical penetration enhancers (CPEs) for transdermal IP of INS across rat skin, both in vitro and in vivo. Three different DESs based on choline chloride (ChCl), namely, ChCl/UR (ChCl and urea), ChCl/GLY (ChCl and glycerol), and ChCl/EG (ChCl and ethylene glycol) in the 1:2 molar ratios have been prepared. To evaluate the capability of studied DESs as CPEs for IP delivery of INS, the rat skin sample was treated with each DES. The effects of different experimental parameters (current density, formulation pH, INS concentration, NaCl concentration, and treatment time) on the in vitro transdermal iontophoretic delivery of INS were investigated. The in vitro permeation studies exhibited that INS was easily delivered employing ChCl/EG, and ChCl/GLY treatments, compared with ChCl/UR: the cumulative amount of permeated INS at the end of the experiment (Q24h) was found to be 131.0, 89.4, and 29.6 µg cm−2 in the presence of ChCl/EG, ChCl/GLY, and ChCl/UR, respectively. The differences in Q24h values of INS are due to the different capabilities of the studied DESs to treat the epidermis layer of skin. In vivo experiments revealed that the blood glucose level in diabetic rats could be decreased using ChCl/EG, and ChCl/GLY as novel CPEs in the IP delivery of INS. The presented work will open new doors towards searching for novel CPEs in the development of transdermal IP of INS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.