Abstract

Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising noninvasive technique with potential beneficial effects on human emotion and cognition, including cortical arousal and alertness. However, it remains unclear how taVNS could improve cortical arousal and alertness, which are crucial for consciousness and daily task performance. Here, we aimed to estimate the modulatory effect of taVNS on cortical arousal and alertness and to reveal its underlying neural mechanisms. Sixty subjects were recruited and randomly assigned to either the taVNS group (receiving taVNS for 20 min) or the control group (receiving taVNS for 30 s). The effects of taVNS were evaluated behaviorally using a cue-target pattern task, and neurologically using a resting-state electroencephalogram (EEG). We found that taVNS facilitated the reaction time for the targets requiring right-hand responses and attenuated high-frequency alpha oscillations under the close-eye resting state. Importantly, taVNS-modulated alpha oscillations were positively correlated with the facilitated target detection performance, i.e., reduced reaction time. Furthermore, microstate analysis of the resting-state EEG when the eyes were closed illustrated that taVNS reduced the mean duration of microstate C, which has been proven to be associated with alertness. Altogether, this work provided novel evidence suggesting that taVNS could be an enhancer of both cortical arousal and alertness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call