Abstract

Of the two commercially cultivated coffee (Coffea) species, C. arabica (arabica) is highly susceptible and C. canephora (robusta) is highly resistant to the insect pest Xylotrechus quadripes (Coleoptera: Cerambycidae), commonly known as coffee white stem borer (CWSB). We constructed a forward-subtracted cDNA library by Suppression Subtractive Hybridization (SSH) from robusta bark tissue for profiling genes induced by CWSB infestation. Among the 265 unigenes of the SSH EST library, 7 unigenes (5 contigs and 2 singletons) matching different pectin-degrading enzymes were discovered. These ESTs matched one pectate lyase, three polygalacturonases, and one pectin acetylesterase gene. Quantitative real-time PCR (qRT-PCR) revealed that CWSB infestation strongly induces the pectate lyase gene at 72h. Complete cDNA sequence of the pectate lyase gene was obtained through 3' and 5' RACE reactions. It was a 1595bp long sequence that included full CDS and both UTRs. Against C. canephora genome sequences in Coffee Genome Hub database ( http://coffee-genome.org/ ), it had 22 matches to different pectate lyase genes mapped on 9 of the 11 pseudochromosomes, the top match being Cc07_g00190 Pectate lyase. In NCBI database, it matched pectate lyase sequences of several plants. Apart from C. canephora, the closest pectate lyase matches were from Sesamum indicum and Nicotiana tabacum. The pectinolytic enzymes discovered here are thought to play a role in the production of oligogalacturonides (OGs) which act as Damage-Associated Molecular Pattern (DAMP) signals eliciting innate immunity in plants. The pectate lyase gene, induced by CWSB infestation, along with other endogenous pectinolytic enzymes and CWSB-specific elicitors, may be involved in triggering basal defense responses to protect the CWSB-damaged tissue against pathogens, as well as to contain CWSB in robusta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call