Abstract

Grass carp is an important aquaculture fish species in China that is affected by severe diseases, especially haemorrhagic disease caused by grass carp reovirus (GCRV). However, the mechanisms of GCRV invasion and infection remain to be elucidated. In the present study, Ctenopharyngodon idellus kidney (CIK) cells were infected with GCRV, harvested at 0, 8, 24, and 72 h post infection, respectively, and then subjected to transcriptomics sequencing. Each sample yielded more than 6 Gb of clean data and 40 million clean reads. To better understand GCRV infection, the process was divided into three phases: the early (0–8 h post infection), middle (8–24 h post infection), and late (24–72 h) stages of infection. A total of 76 (35 up-regulated, 41 down-regulated), 553 (463 up-regulated, 90 down-regulated), and 284 (150 up-regulated, 134 down-regulated) differently expressed genes (DEGs) were identified during the early, middle, and late stages of infection, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that DEGs were mainly involved in carbohydrate biosynthesis, transport, and endocytosis in the early stage, phagocytosis and lysosome pathways were mainly enriched in the middle stage, and programmed cell death, apoptosis, and inflammation were largely associated with the late stage. These results suggest GCRV infection is a gradual process involving adsorption on the cell surface, followed by endocytosis into cells, transport by lysosomes, and eventually resulted in cell necrosis and/or apoptosis. Our findings provide insight into the mechanisms of grass carp reovirus infection.

Highlights

  • The grass carp (Ctenopharyngodon idellus) has been reared in China for more than 60 years as an important aquaculture species

  • Cells.As shown in infected with with grass carp reovirus (GCRV), GCRV, a cytopathic effect effect (CPE) was observed as early as 8 h post infection, and it became more in cells infected pronounced with over time

  • differentially expressed genes (DEGs) in the 0–8 h were mainly associated with virus adhesion, DEGs in the 8–24 h were largely associated virus endocytosis and transmission, and DEGs in the 24–72 h were involved in cell death and apoptosis

Read more

Summary

Introduction

The grass carp (Ctenopharyngodon idellus) has been reared in China for more than 60 years as an important aquaculture species. The production of grass carp reached 5.8 million tons in 2015, accounting for more than 13% of the world’s freshwater aquaculture production [1]. Grass carp haemorrhage disease, caused by grass carp reovirus (GCRV), is one of the most damaging diseases, resulting in huge economic losses to the aquaculture industry of grass carp [2]. GCRV infects grass carp and infects the rare minnow (Gobiocypris rarus), black carp (Mylopharyngodon piceus) and topmouth gudgeon (Pseudorasbora parva), causing haemorrhagic symptoms and death in these species. Grass carp haemorrhage disease outbreaks are frequent and result in huge economic losses in the aquaculture industry, the GCRV is of particular interest to geneticists aiming to develop strategies

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.