Abstract

ObjectivesChronic inflammatory diseases, including diabetes and cardiovascular disease, are heterogeneous and often co-morbid, with increasing global prevalence. Uncontrolled type 2 diabetes (T2D) can result in severe inflammatory complications. As neutrophils are essential to normal and aberrant inflammation, we conducted RNA-seq transcriptomic analyses to investigate the association between neutrophil gene expression and T2D phenotype. As specialized pro-resolving lipid mediators (SPM) act to resolve inflammation, we further surveyed the impact of neutrophil receptor binding SPM resolvin E1 (RvE1) on isolated diabetic and healthy neutrophils.MethodsCell isolation and RNA-seq analysis of neutrophils from N = 11 T2D and N = 7 healthy individuals with available clinical data was conducted. Additionally, cultured neutrophils (N = 3 T2D, N = 3 healthy) were perturbed with increasing RvE1 doses (0 nM, 1 nM, 10 nM, or 100 nM) prior to RNA-seq. Data was evaluated through a bioinformatics pipeline including pathway analysis and post hoc false discovery rate (FDR)-correction.ResultsWe observed significant differential expression of 50 genes between T2D and healthy neutrophils (p < 0.05), including decreased T2D gene expression in inflammatory- and lipid-related genes SLC9A4, NECTIN2, and PLPP3 (p < 0.003). RvE1 treatment induced dose-dependent differential gene expression (uncorrected p < 0.05) across groups, including 59 healthy and 216 T2D neutrophil genes. Comparing T2D to healthy neutrophils, 1097 genes were differentially expressed across RvE1 doses, including two significant genes, LILRB5 and AKR1C1, involved in inflammation (p < 0.05).ConclusionsThe neutrophil transcriptomic database revealed novel chronic inflammatory- and lipid-related genes that were differentially expressed between T2D cells when compared to controls, and cells responded to RvE1 dose-dependently by gene expression changes. Unraveling the mechanisms regulating abnormalities in diabetic neutrophil responses could lead to better diagnostics and therapeutics targeting inflammation and inflammation resolution.

Highlights

  • The increasing global prevalence of chronic inflammatory diseases, such as diabetes, is of critical concern to human health

  • Comparing type 2 diabetes (T2D) to healthy neutrophils, 1097 genes were differentially expressed across resolvin E1 (RvE1) doses, including two significant genes, LILRB5 and AKR1C1, involved in inflammation (p < 0.05)

  • The neutrophil transcriptomic database revealed novel chronic inflammatory- and lipid-related genes that were differentially expressed between T2D cells when compared to controls, and cells responded to RvE1 dose-dependently by gene expression changes

Read more

Summary

Introduction

The increasing global prevalence of chronic inflammatory diseases, such as diabetes, is of critical concern to human health. Inflammatory impairment in diabetes has shown improvements after clinical treatments, demonstrating that cells are not permanently damaged. Appropriate resolution of inflammation programs aim to restore tissue homeostasis following acute inflammation and neutrophil migration [5, 11]. This active process involves key endogenous lipid ligand mediators, such as the specialized pro-resolving mediator resolvin E1 (RvE1), which can bind and transduce agonist signals through innate immune receptors on neutrophils to resolve inflammation [4, 12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call