Abstract
BackgroundBed bugs (Cimex lectularius) are blood-feeding insects poised to become one of the major pests in households throughout the United States. Resistance of C. lectularius to insecticides/pesticides is one factor thought to be involved in its sudden resurgence. Despite its high-impact status, scant knowledge exists at the genomic level for C. lectularius. Hence, we subjected the C. lectularius transcriptome to 454 pyrosequencing in order to identify potential genes involved in pesticide resistance.Methodology and Principal FindingsUsing 454 pyrosequencing, we obtained a total of 216,419 reads with 79,596,412 bp, which were assembled into 35,646 expressed sequence tags (3902 contigs and 31744 singletons). Nearly 85.9% of the C. lectularius sequences showed similarity to insect sequences, but 44.8% of the deduced proteins of C. lectularius did not show similarity with sequences in the GenBank non-redundant database. KEGG analysis revealed putative members of several detoxification pathways involved in pesticide resistance. Lamprin domains, Protein Kinase domains, Protein Tyrosine Kinase domains and cytochrome P450 domains were among the top Pfam domains predicted for the C. lectularius sequences. An initial assessment of putative defense genes, including a cytochrome P450 and a glutathione-S-transferase (GST), revealed high transcript levels for the cytochrome P450 (CYP9) in pesticide-exposed versus pesticide-susceptible C. lectularius populations. A significant number of single nucleotide polymorphisms (296) and microsatellite loci (370) were predicted in the C. lectularius sequences. Furthermore, 59 putative sequences of Wolbachia were retrieved from the database.ConclusionsTo our knowledge this is the first study to elucidate the genetic makeup of C. lectularius. This pyrosequencing effort provides clues to the identification of potential detoxification genes involved in pesticide resistance of C. lectularius and lays the foundation for future functional genomics studies.
Highlights
Bed bugs (Cimex lectularius) are blood-feeding insects poised to become one of the major pests in households throughout the United States
This pyrosequencing effort provides clues to the identification of potential detoxification genes involved in pesticide resistance of C. lectularius and lays the foundation for future functional genomics studies
Transcriptomic analysis Roche 454 pyrosequencing of adult C. lectularius yielded a total of 216,419 transcriptomic reads with 79,596,412 bp, which were assembled into 35,646 expressed sequence tag (EST) (3,902 contigs and 31,744 singletons) (Figure 1) using the Roche Newbler program
Summary
This study is the first to obtain fundamental molecular knowledge of C. lectularius. Some noteworthy results of this study are 1) a significant number of putative defense pathways were identified within the derived sequences; 2) a number of SNPs and microsatellite markers were predicted, which upon validation could facilitate the identification of polymorphisms within C. lectularius populations; and 3) high transcript levels for a cytochrome P450 (CYP9) in pesticide-exposed C. lectularius populations provide initial clues to metabolic resistance. These characteristic features along with the recovered sequences of Wolbachia provide new insights into the biology of C. lectularius
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.