Abstract

Environmental shifts accompanying salmon spawning migrations from ocean feeding grounds to natal freshwater streams can be severe, with the underlying stress often cited as a cause of increased mortality. Here, a salmonid microarray was used to characterize changes in gene expression occurring between ocean and river habitats in gill and liver tissues of wild migrating sockeye salmon (Oncorhynchus nerka Walbaum) returning to spawn in the Fraser River, British Columbia, Canada. Expression profiles indicate that the transcriptome of migrating salmon is strongly affected by shifting abiotic and biotic conditions encountered along migration routes. Conspicuous shifts in gene expression associated with changing salinity, temperature, pathogen exposure and dissolved oxygen indicate that these environmental variables most strongly impact physiology during spawning migrations. Notably, transcriptional changes related to osmoregulation were largely preparatory and occurred well before salmon encountered freshwater. In the river environment, differential expression of genes linked with elevated temperatures indicated that thermal regimes within the Fraser River are approaching tolerance limits for adult salmon. To empirically correlate gene expression with survival, biopsy sampling of gill tissue and transcriptomic profiling were combined with telemetry. Many genes correlated with environmental variables were differentially expressed between premature mortalities and successful migrants. Parametric survival analyses demonstrated a broad-scale transcriptional regulator, cofactor required for Sp1 transcriptional activation (CRSP), to be significantly predictive of survival. As the environmental characteristics of salmon habitats continue to change, establishing how current environmental conditions influence salmon physiology under natural conditions is critical to conserving this ecologically and economically important fish species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.