Abstract

BackgroundIn recent years an increasing number of yeast infections in humans have been related to certain clinical isolates of Saccharomyces cerevisiae. Some clinical strains showed in vivo and in vitro virulence traits and were able to cause death in mice whereas other clinical strains were avirulent.ResultsIn this work, we studied the transcriptional profiles of two S. cerevisiae clinical strains showing virulent traits and two control non-virulent strains during a blood incubation model and detected a specific transcriptional response of clinical strains. This response involves an mRNA levels increase of amino acid biosynthesis genes and especially oxidative stress related genes. We observed that the clinical strains were more resistant to reactive oxygen species in vitro. In addition, blood survival of clinical isolates was high, reaching similar levels to pathogenic Candida albicans strain. Furthermore, a virulent strain mutant in the transcription factor Yap1p, unable to grow in oxidative stress conditions, presented decreased survival levels in human blood compared with the wild type or YAP1 reconstituted strain.ConclusionsOur data suggest that this enhanced oxidative stress response in virulent clinical isolates, presumably induced in response to oxidative burst from host defense cells, is important to increase survival in human blood and can help to infect and even produce death in mice models.

Highlights

  • In recent years an increasing number of yeast infections in humans have been related to certain clinical isolates of Saccharomyces cerevisiae

  • Transcription profile of yeasts in human blood To obtain a global view of the S. cerevisiae response to blood environment and to investigate which set of genes are expressed in the different yeast, we analyzed the transcription profile of avirulent (W303 and CECT 10431) and virulent (D14 and 60) strains exposed to blood

  • Preadapted cell suspension was inoculated into fresh whole human blood and incubated for 0, 15, 30 and 60 min at 37°C. mRNA levels was determined by microarray hybridization

Read more

Summary

Introduction

In recent years an increasing number of yeast infections in humans have been related to certain clinical isolates of Saccharomyces cerevisiae. The majority of S. cerevisiae clinical isolates secrete high levels of proteases and phospholipases, can grow at 42°C, exhibit multiple colony phenotypes, have ability to adhere to epithelial tissue and show invasive pseudohyphal growth on solid agar [9,14,15,16]. These studies showed that clinical isolates differed phenotypically from laboratory and wine strains in vitro, but it remains unclear whether these traits play a role during infection. Little is known about the interactions between S. cerevisiae and host defence cells or non-cellular components [18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call