Abstract

In this study, we investigated the tolerance and accumulation capacity of Dendrobium denneanum Kerr (D.denneanum) by analyzing the growth and physiological changes of D.denneanum under different levels of Zn treatments, and further transcriptome sequencing of D.denneanum leaves to screen and analyze the differentially expressed genes. The results showed that Zn400 treatment (400 mg·kg-1) promoted the growth of D.denneanum while both Zn800 (800 mg·kg-1) and Zn1600 treatment (1600 mg·kg-1) caused stress to D.denneanum. Under Zn800 treatment (800 mg·kg-1), the resistance contribution of physiological indexes was the most obvious: antioxidant system, photosynthetic pigment, osmoregulation, phytochelatins, and ASA-GSH cycle (Ascorbic acid-Glutathione cycle). D.denneanum leaves stored the most Zn, followed by stems and roots. The BCF(Bioconcentration Factor) of the D.denneanum for Zn were all more than 1.0 under different Zn treatments, with the largest BCF (1.73) for Zn400. The transcriptome revealed that there were 1500 differentially expressed genes between Zn800 treatment and group CK, of which 842 genes were up-regulated and 658 genes were down-regulated. The genes such as C4H, PAL, JAZ, MYC2, PP2A, GS, and GST were significantly induced under the Zn treatments. The differentially expressed genes were associated with phenylpropane biosynthesis, phytohormone signaling, and glutathione metabolism. There were three main pathways of response to Zn stress in Dendrobium: antioxidant action, compartmentalization, and cellular chelation. This study provides new insights into the response mechanisms of D.denneanum to Zn stress and helps to evaluate the phytoremediation potential of D.denneanum in Zn-contaminated soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.