Abstract
This study presents a novel strategy that employs quantitative structure-activity relationship models for nanomaterials (Nano-QSAR) for predicting transcriptomic pathway level response using lung tissue inflammation, an essential key event (KEs) in the existing adverse outcome pathway (AOP) for lung fibrosis, as a model response. Transcriptomic profiles of mouse lungs exposed to ten different multiwalled carbon nanotubes (MWCNTs) are analyzed using statistical and bioinformatics tools. Three pathways "agranulocyte adhesion and diapedesis," "granulocyte adhesion and diapedesis," and "acute phase signaling," that (1) are commonly perturbed across the MWCNTs panel, (2) show dose response (Benchmark dose, BMDs), and (3) are anchored to the KEs identified in the lung fibrosis AOP, are considered in modelling. The three pathways are associated with tissue inflammation. The results show that the aspect ratio (κ) of MWCNTs is directly correlated with the pathway BMDs. The study establishes a methodology for QSAR construction based on canonical pathways and proposes a MWCNTs grouping strategy based on the κ-values of the specific pathway associated genes. Finally, the study shows how the AOP framework can help guide QSAR modelling efforts; conversely, the outcome of the QSAR modelling can aid in refining certain aspects of the AOP in question (here, lung fibrosis).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.