Abstract

Background/Objectives: To investigate the crisping mechanism of broad bean-based crisping diets on Nile Tilapia. Methods: Four crisping diets were designed to feed 360 fish for 90 days, and multiomics analyses were employed. Results: Our results indicated that the designed crisping diets for Nile tilapia can effectively make tilapia muscle crispy. The ingestion of broad bean-based diets induced metabolic reprogramming dominated by glycolytic metabolism inhibition in fish, and metabolic reprogramming is the initiator of muscle structural remodeling. Among these, glucose is the main DAMP to be recognized by cellular PRRs, activating further immune response and oxidative stress and finally resulting in muscle change. Conclusions: Based on our results of multiomics, pck2, and ldh played main roles in crisping molecular mechanisms in driving the initial metabolic reprogram. Moreover, the addition of the crisping package further activated the ErbB signaling pathway and downstream MAPK signaling pathway to strengthen immune response, promoting muscle fiber development and growth. Our study delved into the effects of crisping formula diet on the liver of Nile tilapia at the molecular level, providing theoretical guidance for the nutritional regulation of crispy Nile tilapia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.