Abstract

The mouse embryonic stem cell test (mEST) is a promising in vitro assay for predicting developmental toxicity. In the current study, early differentiation of D3 mouse embryonic stem cells (mESCs) under osteoblast culture conditions and embryotoxicity of cadmium sulfate were examined. D3 mESCs were exposed to cadmium sulfate for 24, 48 or 72h, and whole genome transcriptional profiles were determined. The results indicate a track of differentiation was identified as mESCs differentiate. Biological processes that were associated with differentiation related genes included embryonic development and, specifically, skeletal system development. Cadmium sulfate inhibited mESC differentiation at all three time points. Functional pathway analysis indicated biological pathways affected included those related to skeletal development, renal and reproductive function. In summary, our results suggest that transcriptional profiles are a sensitive indicator of early mESC differentiation. Transcriptomics may improve the predictivity of the mEST by suggesting possible modes of action for tested chemicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.