Abstract

Hypomethylating agents (HMAs) are the standard of care for myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). HMA treatment failure is a major clinical problem and its mechanisms are poorly characterized. We performed RNA sequencing in CD34+ bone marrow stem hematopoietic stem and progenitor cells (BM-HSPCs) from 51 patients with CMML and MDS before HMA treatment and compared transcriptomic signatures between responders and nonresponders. We observed very few genes with significant differential expression in HMA non-responders versus responders, and the commonly altered genes in non-responders to both azacitidine (AZA) and decitabine (DAC) treatments were immunoglobulin genes. Gene set analysis identified 78 biological pathways commonly altered in non-responders to both treatments. Among these, we determined that the γ-aminobutyric acid (GABA) receptor signaling significantly affected hematopoiesis in both human BM-HSPCs and mice, indicating that the transcriptomic signatures identified here could serve as candidate biomarkers and therapeutic targets for HMA failure in MDS and CMML.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call