Abstract

The oocyte is vulnerable to various environmental stressors, including heat exposure. Cumulus-oocyte complexes (COCs) comprise functional units for oocytes in vitro maturation, and the cumulus cells provide essential supports and protect the oocyte from environmental insults. Heat exposure results in varied consequences in oocyte, presumably due to different responses of cumulus cells to heat exposure. In this study, we examined whether heat exposure of different duration affects porcine oocytes quality differently, and how such effects, if any, relate to transcriptomic profiles of cumulus cells. COCs were heat-exposed for 4 h (20-24 h, COC4) and 24 h (0-24 h, COC24), respectively, and the quality of oocytes in COC24 group showed significantly impaired with disrupted cumulus expansion and extracellular matrix (ECM) structure. The transcriptomic analysis identified 749 and 1238 differential expression genes (DEGs) in COC4 and COC24, respectively. Moreover, 852 DEGs were found when COC24 was compared with COC4, and the downregulated DEGs were mainly associated with Gene Ontology terms linked with ECM and cell proliferation. In the protein-protein interaction network, HSPE1, TNFAIP6, COL12A1, and COL18A1 were identified as hub genes playing important roles in heat-induced transcriptomic responses. These results indicate that impaired cumulus proliferation and ECM structure are responsible for heat-induced damage in oocytes quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call