Abstract

BackgroundMicroarrays used for gene expression studies yield large amounts of data. The processing of such data typically leads to lists of differentially-regulated genes. A common terminal data analysis step is to map pathways of potentially interrelated genes.MethodsWe applied a transcriptomics analysis tool to elucidate the underlying pathways of leukocyte maturation at the genomic level in an established cellular model of leukemia by examining time-course data in two subclones of U-937 cells. Leukemias such as Acute Promyelocytic Leukemia (APL) are characterized by a block in the hematopoietic stem cell maturation program at a point when expansion of clones which should be destined to mature into terminally-differentiated effector cells get locked into endless proliferation with few cells reaching maturation. Treatment with retinoic acid, depending on the precise genomic abnormality, often releases the responsible promyelocytes from this blockade but clinically can yield adverse sequellae in terms of potentially lethal side effects, referred to as retinoic acid syndrome.ResultsBriefly, the list of genes for temporal patterns of expression was pasted into the ABCC GRID Promoter TFSite Comparison Page website tool and the outputs for each pattern were examined for possible coordinated regulation by shared regelems (regulatory elements). We found it informative to use this novel web tool for identifying, on a genomic scale, genes regulated by drug treatment.ConclusionImprovement is needed in understanding the nature of the mutations responsible for controlling the maturation process and how these genes regulate downstream effects if there is to be better targeting of chemical interventions. Expanded implementation of the techniques and results reported here may better direct future efforts to improve treatment for diseases not restricted to APL.

Highlights

  • Microarrays used for gene expression studies yield large amounts of data

  • As the work has progressed, it is abundantly clear that many genes have multiple regulatory elements under the control of sequence-specific activators and repressors of the core RNA polymerase II (Pol II) complex[7], including CBP and the related p300 protein as essential co-activators of the retinoic acid receptor[8]

  • Previous work[12] compared expression profiles between two promonocytic leukemia U-937 cell lines and in the current study extended this research on neutrophilic differentiation by performing time-course microarray analysis on all-trans retinoic acid (ATRA)-treated subclones

Read more

Summary

Introduction

Microarrays used for gene expression studies yield large amounts of data. The processing of such data typically leads to lists of differentially-regulated genes. Microarray technology has shown great promise for unraveling the many genomic responses of cells to both developmental signals and chemical stressors[1] despite earlier justified concerns for their reliability[2]. In diseases such as cancer, the confluence of dysregulated developmental programs and the need for treatments to either repair or eliminate dysfunctional cells suggests a valuable role for microarray measurement of gene expression. We undertook to examine coordinated gene expression at the transcriptional level using a cell culture-based model of leukemia

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call