Abstract

Spaceflight and simulated spaceflight microgravity induced osteoarthritic-like alterations at the transcriptomic and proteomic levels in the articular and meniscal cartilages of rodents. But little is known about the effect of spaceflight or simulated spaceflight microgravity on the transcriptome of tissue-engineered cartilage developed from human cells. In this study, we investigate the effect of simulated spaceflight microgravity facilitated by parabolic flights on tissue-engineered cartilage developed from in vitro chondrogenesis of human bone marrow mesenchymal stem cells obtained from age-matched female and male donors. The successful induction of cartilage-like tissue was confirmed by the expression of well-demonstrated chondrogenic markers. Our bulk transcriptome data via RNA sequencing demonstrated that parabolic flight altered mostly fundamental biological processes, and the modulation of the transcriptome profile showed sex-dependent differences. The secretome profile analysis revealed that two genes (WNT7B and WNT9A) from the Wnt-signaling pathway, which is implicated in osteoarthritis development, were only up-regulated for female donors. The results of this study showed that the engineered cartilage tissues responded to microgravity in a sex-dependent manner, and the reported data offers a strong foundation to further explore the underlying mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call