Abstract

In this study the transcriptomic profiling of adenosine receptors (ARs) in human leukocytes of heart failure (HF) patients as a function of clinical severity, assessing the possible changes with respect to healthy subjects (C), was evaluated. Total RNA was extracted from leukocytes of C (n = 8) and of HF patients (NYHA I-II n = 9; NYHA III-IV n = 14) with a PAXgene Blood RNA Kit. An increase as a function of clinical severity was observed in each AR (A1R: C = 0.02 ± 0.009, NYHA I-II = 0.21 ± 0.09, NYHA III-IV = 3.6 ± 1.3, P = 0.03 C versus NYHA III-IV, P = 0.02 NYHA I-II versus NYHA III-IV; A2aR: C = 0.2 ± 0.05, NYHA I-II = 0.19 ± 0.04, NYHA III-IV = 1.32 ± 0.33, P = 0.005 C versus NYHA III-IV, P = 0.003 NYHA I-II versus NYHA III-IV; A2bR: C = 1.78 ± 0.36, NYHA I-II = 1.35 ± 0.29, NYHA III-IV = 4.07 ± 1.21, P = 0.03: NYHA I-II versus NYHA III-IV; A3R: C = 0.76 ± 0.21, NYHA I-II = 0.94 ± 0.19, NYHA III-IV = 3.14 ± 0.77, P = 0.01 C versus NYHA III-IV and NYHA I-II versus NYHA III-IV, resp.). The mRNA expression of the ectonucleoside triphosphate diphosphohydrolase (CD39) and the ecto-5′-nucleotidase (CD73) were also evaluated. They resulted up-regulated. These findings show that components of adenosine metabolism and signalling are altered to promote adenosine production and signalling in HF patients. Thus, HF may benefit from adenosine-based drug therapy after confirmation by clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.