Abstract
PurposeOrbital fat hyperplasia commonly occurs in thyroid-associated orbitopathy (TAO). To understand molecular mechanisms underlying orbital adipogenesis, we used transcriptomics to compare gene expression in controls and patients with TAO, as well as in orbital fibroblasts (OFs) undergoing adipogenic differentiation.MethodsWe performed bulk RNA sequencing (RNA-Seq) on intraconal orbital fat from controls and patients with TAO. We treated cultured OFs derived from patients with TAO with adipogenic media to induce adipogenesis. We used single nucleus RNA-Seq (snRNA-Seq) to profile treated and control OFs, identifying genes that are dynamically expressed during orbital adipogenesis in vitro, and compared these results to data from control and TAO orbital fat.ResultsGene expression profiles in control and TAO orbital fat are distinct. Signaling pathways including PI3K-Akt signaling, cAMP signaling, AGE-RAGE signaling, regulation of lipolysis, and thyroid hormone signaling are enriched in orbital fat isolated from patients with TAO. SnRNA-Seq of orbital fibroblasts undergoing adipogenesis reveals differential expression of the adipocyte-specific genes FABP4/5, APOE, PPARG, and ADIPOQ during adipogenic differentiation. The insulin-like growth factor-1 receptor and Wnt signaling pathways appear to be enriched early in adipogenesis. Gene modules that are enriched in TAO orbital fat are upregulated in orbital adipocytes during differentiation in vitro, whereas genes that are enriched in control orbital fat are enriched in undifferentiated OFs.ConclusionsWe identified pathways enriched in TAO orbital fat, and dynamic changes in gene expression that occur during adipogenic differentiation of orbital fibroblasts. These findings may help guide functional studies of genes and pathways critical for orbital adipogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.