Abstract

BackgroundCD4+ T cells can be broadly divided into naïve and memory subsets, each of which are differentially impaired by the aging process. It is unclear if and how these differences are reflected at the transcriptomic level. We performed microarray profiling on RNA derived from naïve (CD44low) and memory (CD44high) CD4+ T cells derived from young (2–3 month) and old (28 month) mice, in order to better understand the mechanisms of age-related functional alterations in both subsets. We also performed follow-up bioinformatic analyses in order to determine the functional consequences of gene expression changes in both of these subsets, and identify regulatory factors potentially responsible for these changes.ResultsWe found 185 and 328 genes differentially expressed (FDR ≤ 0.05) in young vs. old naïve and memory cells, respectively, with 50 genes differentially expressed in both subsets. Functional annotation analyses highlighted an increase in genes involved in apoptosis specific to aged naïve cells. Both subsets shared age-related increases in inflammatory signaling genes, along with a decrease in oxidative phosphorylation genes. Cis-regulatory analyses revealed enrichment of multiple transcription factor binding sites near genes with age-associated expression, in particular NF-κB and several forkhead box transcription factors. Enhancer associated histone modifications were enriched near genes down-regulated in naïve cells. Comparison of our results with previous mouse and human datasets indicates few overlapping genes overall, but suggest consistent up-regulation of Casp1 and Il1r2, and down-regulation of Foxp1 in both mouse and human CD4+ T cells.ConclusionsThe transcriptomes of naïve and memory CD4+ T cells are distinctly affected by the aging process. However, both subsets exhibit a common increase inflammatory genes and decrease in oxidative phosphorylation genes. NF-κB, forkhead box, and Myc transcription factors are implicated as upstream regulators of these gene expression changes in both subsets, with enhancer histone modifications potentially driving unique changes unique to naïve cells. Finally we conclude that there is little overlap in age-related gene expression changes between humans and mice; however, age-related alterations in a small subset of genes may be conserved.

Highlights

  • CD4+ T cells can be broadly divided into naïve and memory subsets, each of which are differentially impaired by the aging process

  • 64 and 98 genes were down-regulated during aging in naïve and memory cells, respectively, 9 of which were down-regulated in both populations (Fig. 1b, Additional file 2: Tables S1 and S2)

  • In agreement with our previous results using this microarray technology on human CD4+ T cells [21], fold change in expression was generally modest, ranging from ≈ 1.2–2.8 fold in naïve cells and ≈ 1.1–8 fold in memory cells

Read more

Summary

Introduction

CD4+ T cells can be broadly divided into naïve and memory subsets, each of which are differentially impaired by the aging process. It is unclear if and how these differences are reflected at the transcriptomic level. We performed microarray profiling on RNA derived from naïve (CD44low) and memory (CD44high) CD4+ T cells derived from young (2–3 month) and old (28 month) mice, in order to better understand the mechanisms of age-related functional alterations in both subsets. Taylor et al Immunity & Ageing (2017) 14:15 age-related functional impairment in T cells are not fully understood. The lifespan of naïve CD4+ cells increases with age in mice and this enhanced longevity has been proposed to cause functional deficits during the aging process [7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.