Abstract

The Asian corn borer moth Ostrinia furnacalis is an important lepidopteran pest of maize in Asia. Odorant-degrading enzymes (ODEs), including carboxylesterases (CCEs), glutathione S-transferases (GSTs), cytochrome P450s (CYPs), UDP-glycosyltransferases (UGTs), and aldehyde oxidases (AOXs), are responsible for rapid inactivation of odorant signals in the insect antennae. In this study, we performed a transcriptome assembly for the antennae of O. furnacalis to identify putative ODE genes. Transcriptome sequencing revealed 35,056 unigenes, and 21,012 (59.94%) of these were annotated by searching against the reference sequences in the NCBI non-redundant (NR) protein database. For functional classification, these unigenes were subjected to Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations. We identified 79 genes encoding putative ODEs: 19 CCEs, 17 GSTs, 24 CYPs, 13 UGTs, and 6 AOXs. BLASTX best hit results indicated that these genes shared quite high amino acid identities with their respective orthologs from other lepidopteran species. Reverse transcription-quantitative PCR showed that OfurCCE2, OfurCCE5, and OfurCCE18 were enriched in male antennae, while OfurCCE7 and OfurCCE10 were enriched in female antennae. OfurCCE14 and OfurCCE15 were expressed at near-equal amounts in the antennae of both sexes. Our findings establish a solid foundation for future studies aimed at understanding the olfactory functions of these genes in O. furnacalis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.