Abstract

N6-methyladenosine (m6A) modification controls the stability, splicing, and translation of mRNA, which is important in the development of illnesses. Wilson's disease (WD) is an autosomal recessive liver copper metabolic disorder that causes liver fibrosis. The role of m6A methylation in WD-induced liver fibrosis development is still unclear. Thus, the goal of this study was to examine the scope of m6A methylation and further explore the potential targets related to WD-induced liver fibrosis. A total of 1930 significantly different m6A peaks were found on 1737 mRNAs, of which 993 were hypermethylated and 744 were hypomethylated when comparing normal and WD-induced liver fibrosis mice (n = 3). In parallel, 1261 differentially expressed mRNAs, comprising 557 upregulated and 704 downregulated mRNAs, were found. Overall, 114 mRNAs with significant changes in m6A levels and RNA expression were identified via joint analysis. Then, through PPI network construction and functional enrichment analysis, 12 hub genes were identified, these genes were mainly enriched in the inflammatory response and immunomodulation, and they are associated with immune cell infiltration. The significant difference in the amount of mRNA m6A modifications indicates that m6A modification is involved in the progression of WD-induced liver fibrosis, and theidentified hub genes are involved in inflammation and immune infiltration. These results may provide insights for subsequent studies on potential regulatory mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.