Abstract

Plants’ reaction to underground microorganisms is complex as sessile nature of plants compels them to prioritize their responses to diverse microorganisms both pathogenic and symbiotic. Roots of important crops are directly exposed to diverse microorganisms, but investigations involving root pathogens are significantly less. Thus, more studies involving root pathogens and their target crops are necessitated to enrich the understanding of underground interactions. Present study reported the molecular complexities in chickpea during Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) infection. Transcriptomic dissections using RNA-seq showed significantly differential expression of molecular transcripts between infected and control plants of both susceptible and resistant genotypes. Radar plot analyses showed maximum expressional undulations after infection in both susceptible and resistant plants. Gene ontology and functional clustering showed large number of transcripts controlling basic metabolism of plants. Network analyses demonstrated defense components like peptidyl cis/trans isomerase, MAP kinase, beta 1,3 glucanase, serine threonine kinase, patatin like protein, lactolylglutathione lyase, coproporphyrinogen III oxidase, sulfotransferases; reactive oxygen species regulating components like respiratory burst oxidase, superoxide dismutases, cytochrome b5 reductase, glutathione reductase, thioredoxin reductase, ATPase; metabolism regulating components, myo inositol phosphate, carboxylate synthase; transport related gamma tonoplast intrinsic protein, and structural component, ubiquitins to serve as important nodals of defense signaling network. These nodal molecules probably served as hub controllers of defense signaling. Functional characterization of these hub molecules would not only help in developing better understanding of chickpea-Foc1 interaction but also place them as promising candidates for resistance management programs against vascular wilt of legumes.

Highlights

  • Legumes are well known for their nutritive value consisting of digestible proteins [1]

  • Annotations were provided to 35597 for J4, 31726 for JC, 31636 for W4 and 35190 for WC, respectively. 50% identity and 40% query coverage was used as cutoff for annotating the transcripts (S5 Table)

  • GO based analyses showed comparatively less number of transcripts related to direct defense as compared to transcripts regulating transcription, carbohydrate metabolism and proteolysis suggesting that imparting defense to a system is a complex phenomenon, probably controlled by multidimensional regulatory mechanism

Read more

Summary

Introduction

Legumes are well known for their nutritive value consisting of digestible proteins [1]. Their ability to form nitrogen fixing nodules with Gram negative rhizobia further adds to their importance. Substantial researches have been carried out on interactions involving model legume plants like Medicago and Lotus and soil inhabiting pathogens [2,3], but reports on crop plants that are exposed to dreadful attacks by diverse members of soil pathogens are significantly inadequate. Advancement of biotechnological tools and their applications have added remarkably to the genome sequencing and annotation projects with draft genome sequences being available for many important crop legumes like soybean, pigeonpea, chickpea etc. With the exception of soybean, researches on other crop legumes are gradually increasing [8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call