Abstract

The highly fine-tuned dynamics of cell cycle gene expression have been intensely studied for several decades. However, some previous observations may be difficult to fully decouple from artifacts induced by traditional cell synchronization procedures. In addition, bulk cell measurements may have disguised intricate details. Here, we address this by sorting and transcriptomic sequencing of single cells progressing through the cell cycle without prior synchronization. Genes and pathways with known cell cycle roles are confirmed, associated regulatory sequence motifs are determined, and we also establish ties between other biological processes and the unsynchronized cell cycle. Importantly, we find the G1 phase to be surprisingly heterogeneous, with transcriptionally distinct early and late time points. We additionally note that mRNAs accumulate to reach maximum total levels at mitosis and find that stable transcripts show reduced cell-to-cell variability, consistent with the transcriptional burst model of gene expression. Our study provides the first detailed transcriptional profiling of an unsynchronized human cell cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.