Abstract

BackgroundThe stress response of Saccharomyces cerevisiae has been extensively studied in the past decade. However, with the advent of recent technology in single-cell transcriptome profiling, there is a new opportunity to expand and further understanding of the yeast stress response with greater resolution on a system level. To understand transcriptomic changes in baker’s yeast S. cerevisiae cells under stress conditions, we sequenced 117 yeast cells under three stress treatments (hypotonic condition, glucose starvation and amino acid starvation) using a full-length single-cell RNA-Seq method.ResultsWe found that though single cells from the same treatment showed varying degrees of uniformity, technical noise and batch effects can confound results significantly. However, upon careful selection of samples to reduce technical artifacts and account for batch-effects, we were able to capture distinct transcriptomic signatures for different stress conditions as well as putative regulatory relationships between transcription factors and target genes.ConclusionOur results show that a full-length single-cell based transcriptomic analysis of the yeast may help paint a clearer picture of how the model organism responds to stress than do bulk cell population-based methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.