Abstract

Pasteurella multocida (Pm) is one of the major pathogens of bovine respiratory disease (BRD), which can develop drug resistance to many of the commonly used antibiotics. Our earlier research group found that with clinical use of enrofloxacin, Pm was more likely to develop drug resistance to enrofloxacin. In order to better understand the resistance mechanism of Pm to enrofloxacin, we isolated PmS and PmR strains with the same PFGE typing in vitro, and artificially induced PmR to obtain the highly resistant phenotype, PmHR. Then transcriptome sequencing of clinically isolated sensitive strains, resistant and highly drug-resistant strains, treated with enrofloxacin at sub-inhibitory concentrations, were performed. The satP gene, of which the expression changed significantly with the increase in drug resistance, was screened. In order to further confirm the function of this gene, we constructed a satP deletion (ΔPm) strain using suicide vector plasmid pRE112, and constructed the C-Pm strain using pBBR1-MCS, and further analyzed the function of the satP gene. Through a continuously induced resistance test, it was found that the resistance rate of ΔPm was obviously lower than that of Pm in vitro. MDK99, agar diffusion and mutation frequency experiments showed significantly lower tolerance of ΔPm than the wild-type strains. The pathogenicity of ΔPm and Pm was measured by an acute pathogenicity test in mice, and it was found that the pathogenicity of ΔPm was reduced by about 400 times. Therefore, this study found that the satP gene was related to the tolerance and pathogenicity of Pm, and may be used as a target of enrofloxacin synergistic effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call