Abstract
The wide uses of graphene oxide (GO) lead to the contact of GO with vascular systems, so it is necessary to investigate the toxicological effects of GO to endothelial cells. Recently, we reported that GO of small lateral size (<500nm) was relatively biocompatible to human umbilical vein endothelial cells (HUVECs), but recent studies by using omics-techniques revealed that nanomaterials (NMs) even without acute cytotoxicity might induce other toxicological effects. This study investigated the effects of GO on HUVECs based on RNA-sequencing and bioinformatics analysis. Even after exposure to 100μg/ml GO, the cellular viability of HUVECs was higher than 70%. Furthermore, 25μg/ml GO was internalized but did not induce ultrastructural changes or intracellular superoxide. These results combined indicated GO's relatively high biocompatibility. However, by analyzing the most significantly altered Gene Ontology terms and Kyoto Encyclopedia of Gene and Genomes pathways, we found that 25μg/ml GO altered pathways related to immune systems' functions and the responses to virus. We further verified that GO exposure significantly decreased Toll-like receptor 3 and interleukin 8 proteins, indicating an immune suppressive effect. However, THP-1 monocyte adhesion was induced by GO with or without the presence of inflammatory stimulus lipopolysaccharide. We concluded that GO might inhibit the immune responses to virus in endothelial cells at least partially mediated by the inhibition of TLR3. Our results also highlighted a need to investigate the toxicological effects of NMs even without acute cytotoxicity by omics-based techniques.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.