Abstract
Methanosaeta spp. are widely distributed in natural environments, and their filamentous cells contribute significantly to sludge granulation and the good performance of anaerobic reactors. A previous study indicated that Methanosaeta harundinacea 6Ac displays a quorum sensing-regulated morphological transition from short to long filaments, and more acetate is channeled into methane production in long filaments, whereas more is channeled into biomass synthesis in short filaments. Here, we performed transcriptomic and physiological analysis to gain insights into active methanogenesis in long filaments of M. harundinacea 6Ac. Both RNA sequencing (RNA-seq) and quantitative reverse transcription-PCR indicated that transcription of the genes involved in aceticlastic methanogenesis and energy metabolism was upregulated 1.2- to 10.3-fold in long filaments, while transcription of the genes for the methyl oxidative shunt was upregulated in short filaments. [2-(13)C]acetate trace experiments demonstrated that a relatively higher portion of the acetate methyl group was oxidized to CO2 in short filaments than in long filaments. The long filaments exhibited higher catalase activity and oxygen tolerance than the short ones, which is consistent with increased transcription of the oxidant-scavenging genes. Moreover, transcription of genes for cell surface structures was upregulated in the long filaments, and transmission electron microscopy revealed a thicker cell envelope in the filaments. RNA-seq determined a >2-fold upregulation of a variety of antistress genes in short filaments, like those encoding chaperones and DNA repair systems, which implies that the short filaments can be stressed. This study reveals the genetic basis for the prevalence of the long filamentous morphology of M. harundinacea cells in upflow anaerobic sludge blanket granules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.