Abstract
Transcriptomics, high-throughput assays, and adverse outcome pathways (AOP) are promising approaches applied to toxicity monitoring in the 21st century, but development of these methods is challenging for nonmodel organisms and emerging contaminants. For example, Endocrine Disrupting Compounds (EDCs) may cause reproductive impairments and feminization of male bivalves; however, the mechanism linked to this adverse outcome is unknown. To develop mechanism-based biomarkers that may be linked through an AOP, we exposed Mytilus edulis to 17-alpha-ethinylestradiol (5 and 50 ng/L) and 4-nonylphenol (1 and 100 μg/L) for 32 and 39 days. When mussels were exposed to these EDCs, we found elevated female specific transcripts and significant female-skewed sex ratios using a RT-qPCR assay. We performed gene expression analysis on digestive gland tissue using an M. edulis microarray and through network and targeted analyses identified the nongenomic estrogen signaling pathway and steroidogenesis pathway as the likely mechanisms of action for a putative AOP. We also identified several homologues to genes within the vertebrate steroidogenesis pathway including the cholesterol side chain cleavage complex. From this AOP, we designed the Coastal Biosensor for Endocrine Disruption (C-BED) assay which was confirmed in the laboratory and tested in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.