Abstract

Previous studies showed that butyrate played benefit roles in the health and metabolism of animals. However, little information on the effects of butyrate on the metabolism of piglets at the extraintestinal level is available. The present study investigated transcriptomic and metabolomic responses in the livers of pigs to evaluate the effects of intravenous sodium butyrate (SB) on the body’s metabolism at the extraintestinal level. A total of 12 Duroc×Landrace×Large White growing barrows (60 days of age) fitted with jugular vein cannula were randomly allocated to either the SB group or the control (CO) group. Pigs in the SB group were intravenously infused with 10 ml SB (200 mmol/l) for 7 days, whereas pigs in the CO group were treated with the same amount of saline. The livers of pigs were collected for gene expression and metabolome analyses. The RNA sequencing (RNA-Seq) analysis showed that the mRNA expression of Acyl-CoA synthetase long-chain family member 1 (ACSL1), carnitine palmitoyltransferase 1A (CPT1A), acetyl-CoA acyltransferase 2 (ACAA2) and phosphoenolpyruvate carboxykinase 1 (PCK1) were downregulated (Q<0.05), whereas fatty acid binding protein 1 (FABP1) and cytochrome P450 family 7 subfamily A member 1 (CYP7A1) were upregulated (P<0.05) by SB treatment, indicating a decrease in fatty acid oxidation and gluconeogenesis and an increase in fatty acid transportation and cholesterol metabolism. Gas chromatography-mass spectrometry analysis showed that raffinose was enriched in the SB group compared with the CO group, indicating a decrease in metabolism of galactose. Moreover, SB treatment significantly decreased the concentration of blood cholesterol. The results suggest that a short-term intravenous infusion of SB could modulate hepatic lipid metabolism by decreasing fatty acid oxidation and increasing fatty acid transportation and cholesterol metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.