Abstract

BackgroundBeta vulgaris L. is one of the main sugar-producing crop species and is highly adaptable to saline soil. This study explored the alterations to the carbon and nitrogen metabolism mechanisms enabling the roots of sugar beet seedlings to adapt to salinity.ResultsThe ionome, metabolome, and transcriptome of the roots of sugar beet seedlings were evaluated after 1 day (short term) and 7 days (long term) of 300 mM Na+ treatment. Salt stress caused reactive oxygen species (ROS) damage and ion toxicity in the roots. Interestingly, under salt stress, the increase in the Na+/K+ ratio compared to the control ratio on day 7 was lower than that on day 1 in the roots. The transcriptomic results showed that a large number of differentially expressed genes (DEGs) were enriched in various metabolic pathways. A total of 1279 and 903 DEGs were identified on days 1 and 7, respectively, and were mapped mainly to 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the genes were involved in carbon metabolism and amino acid (AA) biosynthesis. Furthermore, metabolomic analysis revealed that sucrose metabolism and the activity of the tricarboxylic acid (TCA) cycle increased in response to salt stress. After 1 day of stress, the content of sucrose decreased, whereas the content of organic acids (OAs) such as L-malic acid and 2-oxoglutaric acid increased. After 7 days of salt stress, nitrogen-containing metabolites such as AAs, betaine, melatonin, and (S)-2-aminobutyric acid increased significantly. In addition, multiomic analysis revealed that the expression of the gene encoding xanthine dehydrogenase (XDH) was upregulated and that the expression of the gene encoding allantoinase (ALN) was significantly downregulated, resulting in a large accumulation of allantoin. Correlation analysis revealed that most genes were significantly related to only allantoin and xanthosine.ConclusionsOur study demonstrated that carbon and nitrogen metabolism was altered in the roots of sugar beet plants under salt stress. Nitrogen metabolism plays a major role in the late stages of salt stress. Allantoin, which is involved in the purine metabolic pathway, may be a key regulator of sugar beet salt tolerance.

Highlights

  • Beta vulgaris L. is one of the main sugar-producing crop species and is highly adaptable to saline soil

  • The purpose of this study was to determine how sugar beet roots ensure the balance between carbon metabolism and nitrogen metabolism in response to salt stress, to determine the pathways important to sugar beet root adaptation and tolerance to salt stress, and to identify key genes and metabolites involved in the salt stress response

  • Physiological changes in sugar beet under salinity stress Our preliminary experiments showed that sugar beet plants could complete the vegetative growth phase in a solution whose maximum salt concentration was 300 mM (NaCl+Na2SO4)

Read more

Summary

Introduction

Beta vulgaris L. is one of the main sugar-producing crop species and is highly adaptable to saline soil. This study explored the alterations to the carbon and nitrogen metabolism mechanisms enabling the roots of sugar beet seedlings to adapt to salinity. High salt concentrations generally lead to plant ion imbalance, infiltration and oxidative damage, which can lead to wilting and plant death [4]. Improving the salt tolerance of crops has become an important research topic. Owing to its excellent salt tolerance, sugar beet is used as a model sugar crop species for studying the salt tolerance mechanism of plants [5,6,7,8]. Compared with other plants species, sugar beet can better withstand high salt stress and drought stress [9]. Plants respond to salt stress by accumulating osmotic regulators, selectively absorbing salt ions, partitioning salt ions, and enhancing their antioxidant capability [10, 11]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call