Abstract

Diverse splicing types in nuclear and chloroplast genes of protist Euglena gracilis have been recognized for decades. However, the splicing machinery responsible for processing nuclear precursor messenger RNA introns, including trans-splicing of the 5' terminal outron and spliced leader (SL) RNA, remains elusive. Here, we identify 166 spliceosomal protein genes and two snRNA genes from E. gracilis by performing bioinformatics analysis from a combination of next-generation and full-length transcriptomic RNA sequencing (RNAseq) data as well as draft genomic data. With the spliceosomal proteins we identified in hand, the insensitivity of E. gracilis to some splicing modulators is revealed at the sequence level. The prevalence of SL RNA-mediated trans-splicing is estimated to be more than 70% from our full-length RNAseq data. Finally, the splicing proteomes between E. gracilis and its three evolutionary cousins within the same Excavata group are compared. In conclusion, our study characterizes the spliceosomal components in E. gracilis and provides the molecular basis for further exploration of underlying splicing mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call