Abstract

Pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP) have been found to accumulate during the ripening of multiple types of fruits; however, the function and mechanism of pipecolate pathway in fruits remain unclear. Here study was conducted on fruits produced by the model plant tomato, wherein the NHP biosynthesis-related genes, Slald1 and Slfmo1, were mutated. The results showed that the fruits of both the Slald1 and the Slfmo1 mutants exhibited a delayed onset of ripening, decreased fruit size, nutrition and flavor. Exogenous treatment with Pip and NHP promoted fruit ripening and improved fruit quality. Transcriptomic analysis combined with weighted gene co-expression network analysis revealed that the genes involved in the biosynthesis of amino acids, carbon metabolism, photosynthesis, starch and sucrose metabolism, flavonoid biosynthesis, and plant hormone signal transduction were affected by SlFMO1 gene mutation. Transcription factor prediction analysis revealed that the NAC and AP2/ERF-ERF family members are notably involved in the regulation pathway. Overall, our results suggest that the pipecolate biosynthesis pathway is involved in the simultaneous regulation of fruit ripening and quality and indicate that a regulatory mechanism at the transcriptional level exists. However, possible roles of endogenously synthesized Pip and NHP in these processes remain to be determined. The biosynthesis pathway genes SlALD1 and SlFMO1 may be potential breeding targets for promoting fruit ripening and improving fruit quality with concomitant yield increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call