Abstract

BackgroundThe Anopheles gambiae salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host.ResultsWe have performed a global transcriptome analysis of the A. gambiae salivary gland response to blood-feeding, to identify candidate genes that are involved in hematophagy. A total of 4,978 genes were found to be transcribed in this tissue. A comparison of salivary gland transcriptomes prior to and after blood-feeding identified 52 and 41 transcripts that were significantly up-regulated and down-regulated, respectively. Ten genes were further selected to assess their role in the blood-feeding process using RNAi-mediated gene silencing methodology. Depletion of the salivary gland genes encoding D7L2, anophelin, peroxidase, the SG2 precursor, and a 5'nucleotidase gene significantly increased probing time of A. gambiae mosquitoes and thereby their capacity to blood-feed.ConclusionsThe salivary gland transcriptome comprises approximately 38% of the total mosquito transcriptome and a small proportion of it is dynamically changing already at two hours in response to blood feeding. A better understanding of the salivary gland transcriptome and its function can contribute to the development of pathogen transmission control strategies and the identification of medically relevant bioactive compounds.

Highlights

  • The Anopheles gambiae salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host

  • While earlier sialo-transcriptomic studies have identified a variety of salivary gland genes, [1,16,17,18,19,20,21], we present the first global microarray transcriptome analysis of the A. gambiae salivary gland under conditions related to feeding

  • The A. gambiae salivary gland transcriptome In order to characterize the A. gambiae female salivary gland transcriptome, we employed a microarray-based genome transcription approach to compare the transcript abundance in the salivary glands at 2 hours after blood feeding to salivary glands of unfed female mosquitoes

Read more

Summary

Introduction

The Anopheles gambiae salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host. Salivary glands and the saliva of insect disease vectors have attracted considerable attention because of their role in pathogen transmission and their production of pharmacologically active factors [1,2,3,4]. It is during the blood-feeding process that the Plasmodium parasite is taken up from an infected A. gambiae host. These findings suggest that the compounds responsible for such activities could be used for the development of novel anti-inflammatory drugs [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.