Abstract

Background Inflammation and immune response play a key role in myocardial injury and repair after myocardial infarction (MI), while the relevant regulatory mechanisms of immune infiltration in MI have been fully explored. Ferroptosis is an iron-dependent form of regulated cell death characterized by an excessive accumulation of iron and lipid peroxides and involves in the pathogenesis of myocardial infarction. In the present study, by integrating intelligent data acquisition, data mining, network pharmacology, and computer-assisted target fishing, we developed a highly efficient system for screening immunity- and ferroptosis-related biomarkers and immunomodulatory ability of herbal ingredients. Results Immune infiltration analysis of GSE97320 showed significant neutrophil infiltration in the myocardial infarction group compared to the healthy group, and 807 differentially expressed genes (DEGs) were obtained (526 up-regulated and 281 downregulated). Among these DEGs, 73 immune-related and 8 ferroptosis-related DEGs were obtained. Further protein-protein interaction network analysis revealed 30 hub genes. The DEGs were enriched in a total of 107 biological processes, of which neutrophil-related biological processes were the most significant, enriched in 31 cellular components such as bead-binding hemoglobin complex, hemoglobin complex, and enriched in 36 functions such as bead-binding hemoglobin complex and hemoglobin complex. The DEGs were also enriched in 21 KEGG pathways such as lipid-atherosclerosis and formation of neutrophil extracellular traps. Further analysis identified Toll-like receptor-4 (TLR4) as the key gene, and based on TLR4, 17 herbal ingredients and 6 herbal medicines were predicted by using HERB and Coremine databases. Further molecular docking analysis showed that TLR4 could bind to salvianolic acid b and stigmasterol. The molecular dynamics analysis revealed that TLR4 could bind to salvianolic acid b, stigmasterol, and resveratrol in the stable phase with the binding between TLR4 and salvianolic acid b being the most stable. Conclusions TLR4 is a key gene that is related to ferroptosis and immune cell infiltration. Further analysis revealed that 17 herbal ingredients and 6 herbal medicines were predicted to have potential interactions with TLR4. These predicted herbal ingredients/medicines may act synergistically to protect against myocardial injury after MI through suppressing neutrophil extracellular traps. The protective effects may be associated with immune cell infiltration and ferroptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call