Abstract

BackgroundSevere acute respiratory syndrome coronavirus clade 2 (SARS‐CoV‐2) is a single‐stranded RNA virus responsible for the global pandemic of the coronavirus disease‐2019 (COVID‐19). To date, there are still no effective approaches for the prevention and treatment of COVID‐19.ObjectiveThe present study aims to explore the possible mechanisms of SARS‐CoV‐2 infection in human lung cells.MethodsData interpretation was conducted by recruiting bioinformatics analysis, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways analysis using downloaded data from the NCBI Gene Expression Omnibus database.ResultsThe present study demonstrated that SARS‐CoV‐2 infection induces the upregulation of 14 interferon‐stimulated genes, indicative of immune, and interferon responses to the virus. Notably, genes for pyrimidine metabolism and steroid hormone biosynthesis are selectively enriched in human lung cells after SARS‐CoV‐2 infection, suggesting that altered pyrimidine metabolism and steroid biosynthesis are remarkable, and perhaps druggable features after SARS‐CoV‐2 infection. Besides, there is a strong positive correlation between viral ORF1ab, ORF6, and angiotensin‐converting enzyme 2 (ACE2) expression in human lung cells, implying that ACE2 facilitates SARS‐CoV‐2 infection and replication in host cells probably through the induction of ORF1ab and ORF6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.