Abstract

The genus Thioalkalivibrio includes haloalkaliphilic chemolithoautotrophic sulfur-oxidizing bacteria isolated from various soda lakes worldwide. Some of these lakes possess in addition to their extreme haloalkaline environment also other harsh conditions, to which Thioalkalivibrio needs to adapt. An example is arsenic in soda lakes in eastern California, which is found there in concentrations up to 3000 μM. Arsenic is a widespread element that can be an environmental issue, as it is highly toxic to most organisms. However, resistance mechanisms in the form of detoxification are widespread and some prokaryotes can even use arsenic as an energy source. We first screened the genomes of 76 Thioalkalivibrio strains for the presence of known arsenic oxidoreductases and found 15 putative ArxA (arsenite oxidase) and two putative ArrA (arsenate reductase). Subsequently, we studied the resistance to arsenite in detail in Thioalkalivibrio jannaschii ALM2T, and Thioalkalivibrio thiocyanoxidans ARh2T by comparative genomics and by growing them at different arsenite concentrations followed by arsenic species and transcriptomic analysis. Tv. jannaschii ALM2T, which has been isolated from Mono Lake, an arsenic-rich soda lake, could resist up to 5 mM arsenite, whereas Tv. thiocyanoxidans ARh2T, which was isolated from a Kenyan soda lake, could only grow up to 0.1 mM arsenite. Interestingly, both species oxidized arsenite to arsenate under aerobic conditions, although Tv. thiocyanoxidans ARh2T does not contain any known arsenite oxidases, and in Tv. jannaschii ALM2T, only arxB2 was clearly upregulated. However, we found the expression of a SoeABC-like gene, which we assume might have been involved in arsenite oxidation. Other arsenite stress responses for both strains were the upregulation of the vitamin B12 synthesis pathway, which can be linked to antioxidant activity, and the up- and downregulation of different DsrE/F-like genes whose roles are still unclear. Moreover, Tv. jannaschii ALM2T induced the ars gene operon and the Pst system, and Tv. thiocanoxidans ARh2T upregulated the sox and apr genes as well as different heat shock proteins. Our findings for Thioalkalivibrio confirm previously observed adaptations to arsenic, but also provide new insights into the arsenic stress response and the connection between the arsenic and the sulfur cycle.

Highlights

  • The genus Thioalkalivibrio comprises a group of metabolically diverse, haloalkaliphilic and chemolithoautotrophic sulfuroxidizing bacteria thriving under extreme conditions in soda lakes

  • For the strains used in the cultivation experiment, Tv. jannaschii ALM2T possesses a putative ArxA while Tv. thiocyanoxidans ARh2T lacks any of the known genes to generate energy from inorganic arsenic

  • We identified the putative potential of arsenic metabolism by the presence of Arx in 14 Thioalkalivibrio strains, and of Arr in two

Read more

Summary

Introduction

The genus Thioalkalivibrio comprises a group of metabolically diverse, haloalkaliphilic and chemolithoautotrophic sulfuroxidizing bacteria thriving under extreme conditions in soda lakes They are part of the family Ectothiorhodospiraceae within the Gammaproteobacteria (Sorokin et al, 2001a), and include 10 described species and more than 100 isolated strains (Foti et al, 2006; Sorokin et al, 2012). Transcripts of the arxA gene that were highly similar to genes of Thioalkalivibrio were discovered in high abundance in Mono Lake, an arsenic-rich soda lake in eastern California (Edwardson and Hollibaugh, 2017) Soda lakes in this area possess, in addition to their characteristic extreme haloalkaline condition (Jones et al, 1977, 1998), elevated arsenic concentrations that range from 0.8 μM in Crowley Lake, over 200 μM in Mono Lake, to 3000 μM in Searles Lake (Oremland et al, 2004). Despite the multi-extreme conditions, Thioalkalivibrio are found in abundance in these soda lakes (Stamps et al, 2018)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call